Venison

Megamillian - 3 yrs

144 O 05 - 4 yrs

Maximillian - 7 yrs

Valdimir - 4 yrs

Heinrich VI - 7 yrs

and now...

Antlers

Wilkins Farming
Breeding for the Future

North Island Red Sire Stag Sale

14th December 2012 | 6PM

Catalogue

Sale to be held at 6pm at the property of George and Laura Williams “Te Maire” 678 Matheson Road, to the West off Highway 50, on the northern side of Tikokino.
We would like to offer you the opportunity to assess our line-up of 2 year old Red Sire Stags for sale this season by auction on 14th December 2012, our second sale at the Hawkes Bay property of George and Laura Williams “Te Maire”.

We are confident you will be impressed with our continued progress in the stock we will be presenting through the direction of our breeding programme including stockmanship, BVs including 12 mth growth rate and meat yield or carcass lean BV (CLBV) in particular along with other characteristics you may look for in a new sire stag. These CLBVs are well above industry averages for this trait!

This years sale line up proved their genetic merit when reviewing the 15 month live weights where recorded 10 February 2012 averaged in the mid 150’s with the top stag recording a live weight of 184kgs on this date.”

If you are serious about breeding for venison production it is important to understand the work we are doing on carcass yield and what returns this could give you as a venison farmer. This is detailed further in this catalogue and on our website. Our Deer Breeding also featured on Stud Tour TV programme on channel 99, this programme can be reviewed on our web site or ruraltv.co.nz.

It is also exciting that there are number of new industry initiatives ranging from DPT (Deer Progeny Test - www.deeresearch.org.nz), PIP (production improvement program) and meat yield information and payments are becoming a reality that will back up the value of production enhancing genetics.

We are comfortable we can provide you with a sire that will enhance your production including the antler structure the Eastern’s provide or whatever your goals maybe. With the continued market outlook for venison looking solid, financial return on production enhancing genetics will be very valuable.

We look forward to seeing you at our sale or hope to hear from you in the near future if you have any queries or interest in our deer breeding program or feedback from past purchases.

Yours in farming,

Michael Wilkins
Wilkins Farming Limited
Originally Sharrow Farm (now known as Wilkins Farming Ltd) supplied large numbers of hinds in the pioneering days of deer farming for corporations such as Eastern Deer Corporation in the Hawkes Bay and Land Corp throughout the South Island along with smaller Southland based operations.

Deer breeding has spanned over four decades now. Wilkins Farming has been breeding for body weight and velvet/trophy from various NZ and European bloodlines. Bloodlines bought from Rob Brookes in the 80’s and 90’s are based mainly on King Richard from Festl bloodlines Germany, amongst various other European parks.

These German genetics have been crossed with Hungarian bloodlines at Wilkins Farming in the mid 90s with a son of Kapos called Fredrich, Fredrich’s velvet and body weights speak for themselves, and the progeny he left is certainly eye catching. Wilkins Farming Ltd has reviewed and bred from deer, from most of the well know parks and studs in Europe and NZ.

Since 2001 artificial insemination (AI) has been a big part of introducing new genetics to our herd from top industry sires. These programs ranged in size starting with 50 hinds in 2001 to 800 in 2008. On the back of AI since 2004 we have been using embryo transfer (ET) to help speed up the multiplication of the animals, influencing breeding for specific traits. We have also bred and purchased top sires for venison growth and maternal traits. The quality of these sires is now the back bone of our breeding program and we rely less on AI and ET.

To continue our genetic and production improvement we have recently purchased the Stanfield Eastern Stud in 2008. This stud was established by Clive and Elsie Jermy who pioneered the importation of Eastern red deer to New Zealand. This enforces our goal of using the best genetics available and the use of the latest technology, including CT and ultrasound scanning.

Besides the recorded stock we have been continuously striving to breed European red deer for growth rate and trophy/velvet for large-scale commercial use.

“Breeding for the Future”

Our aim is to produce high value from an efficient maternal weight hind through the use of the latest technology and best genetics available.

Pictured: 144/Orange/05 at 4 years
Through recording it is easier to mate the right hind to the right stag for specific goals. We are continuously establishing and reviewing Breed values and DNA profiles of our animals to enhance the accuracy of our monitoring.

Our main focus is breeding an animal that will be an efficient breeder of venison.
To do this you need to have the right genetics and feed.

Approximately 90% of our herd has a breeding focus on the following five principles:

1. A Red hind herd should have an average adult body weight of 110 to 120 kgs, creating satisfactory breeding efficiency.
2. Once this has been achieved you are on the front foot to getting this progeny to the high value early spring market. To achieve this market it is also important to select on the growth rate from weaning to 100kgs.
3. High carcass yield and high value meat cuts, breeding a higher value animal.
4. Temperament, fertility and calving date all play a part in having a successful breeding programme.
5. Strong velvet and trophy genetic base means these stags may still perform well beyond the venison market. The balance of our herd is still selected especially to breed trophy deer that are velveted until they reach their breeding potential. Then trophy value is realised, adding residual value to the sire when it comes to the end of its breeding worth.

In relation to point 3, we are currently in our ninth season of collecting on farm measurements of carcass loin for meat quality traits through ultrasound scanning, measuring eye muscle area of live deer. We are also making use of the Vio-scan services for meat yield at Invermay in Mosgiel, to add value to our breeding programme to further enhance carcass value.

We are using a wide range of genetics to achieve these goals, enabling us to have a large number of options for cross breeding. The genetics being sourced, we believe, are the best available in the world to our knowledge that we can access for the specific traits we are breeding for.

Wilkins Farming continue to keep pure bloodlines, alongside this our three main breeding groups consist of Euros (composite breed of deer from across UK and Europe), Eastern (Eastern European descent) and German English (German & English Parks). These three bloodlines are maintained through mating approximately 1500 fully recorded hinds annually. With this hind base we continue to collect data to evaluate the best options for breeding to optimise on farm production and profitability.

TE MAIRE, George and Laura Williams, 678 Matheson Road, Hawkes Bay

The Williams family are established farmers in the area with vast experience in farming deer. They have been farming deer for 25 years, and are the 3rd generation of Williams on Te Maire. We are grateful to George and Laura for helping us bring our stags to the North Island.

NORTH ISLAND/SOUTH ISLAND SALES

All stags sold at both these sales are bred on the home property in Southland. As spikers these stags have been sorted with an allocation trucked to the North Island prior to button drop before the sale date.

At present the South Island sale is the larger of the two sales, the difference in the offering is the top five stags bred for venison and top pure Easterns from proven antler breeding lineage will be sold from the home farm in Southland. After this point we have drafted the stags one for one on genetic merit, splitting the stags between the two sales.
Breed Values
Jason Archer, AgResearch Ltd

Breeding values are a tool used in most livestock industries to assist in making selection decisions, and their impact on making genetic progress is well proven. Breeding values give an estimate of the genetic superiority of individual animals which is more accurate than assessment of the animal’s own appearance or measured performance alone. In essence Breeding Values make predictions based on:

1. Adjusting for the systematic differences that occur between animals due to factors such as:
 i. management group (this includes feeding, but also other factors which might affect the performance of a whole group including water supply, etc).
 ii. Sex of calf
 iii. Age of dam (2 year old hinds have lower productivity than other age groups).

2. Adjusting performance records for how heritable the trait is (some traits have a larger relative contribution of genetics in determining performance than others) and for the available performance information on relatives (e.g. information on the performance of sire, dam, half-brothers and sisters, and progeny if available adds information to predicting breeding values over and above the performance of the individual alone).

The breeding value prediction system for the deer industry in New Zealand is called DEERSelect. It operates on an internet-based system to allow breeders from all over the country to contribute data to an industry database which is used to calculate breeding values. For breeding values for growth traits this data is pooled across the country when calculating breeding values, so that the breeding values on animals in any one herd can be compared to those in other herds across the industry. This allows us much more scope when selecting the sires which we use to breed stags, and results in much faster genetic progress. The outcomes can be seen in the graph below (Figure 1) which plots the average eBVs of animals born across New Zealand over the last 20 years, and the marked improvement coinciding with the start of eBV usage in the early 2000’s, and also an increased emphasis by breeders on venison traits, is evident.

The Breeding Values (eBV’s) for growth traditionally reported are for weight at 12 months of age and mature weight. As of October 2011 carcass eBV’s such as carcass lean yield (kg) (that Wilkins Farming are presenting), were also made available on DEERSelect. Carcass lean eBV represents the kg of lean meat yield on a 12 month animal. Growth and carcass eBV’s are reported in kilograms and are relative to the average animal born in 1995 and recorded on the DEERSelect database. In other words, a stag with a carcass lean eBV of +5.0 carrying genes which would yield 5 kg extra meat as a yearling than the average recorded stag born in 1995 would yield. If you use this stag as a sire, his calves will then yield 2.5 kg more meat (on average) than a stag with an eBV of 0.0 used over a similar group of hinds. The difference is half of the difference of the stag’s eBVs because the stag only contributes 50% of the calf’s genetics – the other half coming from the hind. Of course if you use the stag over a group of hinds with similar genetic merit to the stag himself you will get calves with better genetics from both hind and stag and will achieve more gains in performance. The stag’s genetics will also be passed to his daughters which if kept as replacements will be able to pass on their better genes to future calves. In this way, over time the average performance level of your herd will lift (providing the animals are fed to be able to achieve their genetic potential), and you will get a long-term permanent improvement in productivity from your investment in animal genetics.

Genetic trends from the Wilkins herd indicate that significant progress is being made in growth rates. Many stags in the 2012 sale have W12eBVs well above the average for their age group across New Zealand and performance of offspring from this year’s offering of stags will continue to improve. Incorporating carcass eBV’s such as carcass lean (Figure 3) this year, and in to the future should make similar genetic gain for those traits.
The graphs below (Figures 2 and 3) show the eBVs of the stags available in this catalogue. These graphs simply plot individual animals by their breed type, which are compared to the average of the deer born in the same year (2010) and recorded on the DEERSelect database, given as a solid green line. This average includes a proportion of DEERSelect-recorded stags which are born in herds with a strong antler focus and relatively little emphasis on growth rate in their selection objectives. However, the graph still gives a picture of where the stags available in this sale sit relative to other stags born in the same year around New Zealand, and (within the same analysis) eBVs are comparable across other herds around New Zealand.

Figure 2. Breeding value for 12-month weight of sale stags plotted with average eBV of 2010 born stags across all DEERSelect herds.

The Breeding Values (eBV’s) for growth traditionally reported are for weight at 12 months of age and mature weight. As of October 2011 carcass eBV’s such as carcass lean yield (kg) per animal are also reported in kilograms and are relative to the average animal born in 1995 and recorded on the DEERSelect database (that Wilkins Farming are presenting), were also made available on DEERSelect. Carcass lean eBV’s this year, and in to the future should make similar genetic gain for those traits.

Incorporating carcass eBV’s such as carcass lean this year, and in to the future should make similar genetic gain for those traits. However, for example, the difference in weight of meat in striploins measured at slaughter between the top and bottom 5% of a line of 95 Wilkins Farming red deer was 1.1kg after adjustment for differences in carcass weight. At $9/kg carcass weight, this equates to a difference of $9.90 per head from the loin alone, without including any related increase in meat yield from the other areas of the carcass. Including the weights of meat in the hindleg and shoulder cuts measured in the same trial slaughter resulted in a difference in value between the best and worst animals of $54 FOB/animal. This value is expected to increase as genetic improvement from the ultrasound and CT scanning programme add to the improvements in meat yield.

Ultrasound scanning
In order to estimate meat yield in a live animal, we have to be able to ‘look inside’ the body of the animal. Ultrasound scanning is a medical technology that is able to collect images of tissues in the body. It was developed for use on humans, but has been widely used in the sheep industry to measure the area of the eye muscle to improve meat production.

Ultrasound scanning works well for scanning farmed animals. The scanner itself is small and portable meaning it can be used on-farm. It does not take long to measure an individual animal and they can be measured in a crush without the need to sedate. It is also relatively inexpensive so a large number of animals can be measured. However, it is not possible with ultrasound to scan the entire carcass meaning that the results for the eye muscle are used to give an approximation of total meat yield. There are also problems with deer in collecting good images when the stags are in their winter coats.

Wilkins Farming also measures the length of the loin when deer are ultrasound scanned and use length and eye muscle area to estimate the volume of the loin muscle. This measurement give a useful estimate of the size of the loin on the day, but is not a genetic measure.

Ultrasound is a useful tool in genetic improvement programmes to improving meat yield. It gives better estimates of meat yield than using live weight alone, but is not as accurate as more expensive technologies like CT scanning. However, the fact that it is inexpensive, easy to collect and measured on-farm means that potentially all of the stags can be measured.

CT scanning
CT scanning is another human medical scanner that has been applied for use in livestock. CT scanner allow us to take very accurate measurements of meat and fat in the carcass of an animal. The CT measurements are effectively as slaughtering the animals and then dissecting out the meat from the fat and bone in the carcass. However, the stag is still alive after CT scanning and can be used in a breeding programme.
While the accuracy of CT is excellent, scanning is very expensive (hundreds of dollars per animal), and only a relatively small number of animals can be scanned in a day. The machine is not portable, so the deer have to be trucked to the CT facility rather than scanned on farm. The deer also have to be anaesthetised while they are scanned. As such, it is suited to taking a set of highly accurate measurements on a small group of animals. This means that CT scanning is suited to selecting the stud sires for use in the stud rather than for animals for sale to clients. The genetic improvements made in the stud then flow on to the next crop of stags for sale.

Benefits of ultrasound and CT scanning
Selecting for growth rate alone will improve the value of an animal’s carcass because it will have a larger carcass at the same date, or it can be slaughtered at an earlier age. If some meat yield measurements (i.e. ultrasound and CT scanning) are included in the genetic improvement programme, it is possible to improve carcass yield over and above the improvement that come from improved growth rate. In a breeding system that ultrasound scans all of the stags and CT scans the top 10% of stags, we would expect to lose a small amount of the improvement in growth rate (340g per round of selection), this would be compensated for by improvements in the yield of meat in the hind leg, loin and shoulder regions of the carcass. The gains have been estimated at an additional 510 grams of meat per round of selection, including 270g additional in the hind leg, 70g additional on the loin and 150 grams additional in the shoulder. These gains are per round of selection and are cumulative so with five years of selection the gains would be 1343, 373 and 747g more meat in the hindleg, loin and shoulder cuts than would have been the case if the stags had only been selected on the basis of growth rates.

These gains are based on random allocation of hinds to the stud stags. Further gains can be made using ‘assortative mating’ where the best stags are mated to the best hinds, although the level of inbreeding has to be monitored using this technology.
Welcome to this sale day.

LEADER is pleased to be a supplier of identification tags for Wilkins farms. With the roll out of electronic tags under the AHB and NAIT schemes many of you will be wondering what will be your best option.

The tags you see on these animals are of the same type approved as NAIT RFID tags. They are the same tags sold in millions that are also used in the Australian Mandatory National Livestock Identification Scheme. The technology used in these tags is known as HDX or Half Duplex radio frequency which is generally accepted as the preferred type for getting maximum reading distance. The glass transponder enclosed in the tag is also capable of being recycled should NAIT allow it in the future. Should recycling of tag transponders be approved the price of tags will be reduced.

We recommend you look at LEADER’s website www.leaderproducts.co.nz for more information. Please refer to “A SUMMARY OF RFID TAGS FOR LIVESTOCK” in the GENERAL INFO-RFID area.

Special Prices for NZDFA members.

John Dumbrell
1. The stags are offered by public auction.
2. Antler will be cut after sale and remain property of vendor unless advised differently by purchaser on sale day.
3. All sale stags have passed Johnes testing.
4. Wilkins Farming Breeding Herds have been TB tested clear and carry C10 plus status.
5. Wilkins Farming will stand by their stag’s performance, though the vendor makes no guarantees.
6. Terms are strictly cash unless prior arrangements have been made with Wilkins Farming Limited or participating stock and station agents.
7. Sales are GST exclusive

Special Conditions

No animals, embryos or semen sold by Wilkins Farming or their germplasm, any subsequent progeny or germplasm, including the semen and germplasm of that progeny may be supplied to any third party without the express written permission of Wilkins Farming Ltd.

The condition does not affect the normal commercial deer farming or stud farming, or the normal sales of semen or embryos as it applies to entities with the primary function of commercial semen/germplasm activity.

OSH

Every effort will be taken by the vendors, their staff and assistants, both on the day of the sale as well as on any other visits of inspection to ensure the safety of intending buyers and visitors. However we wish to advise that this is a farm run under normal management conditions and certain dangers exist in relation to livestock and their environment.

Visitors should take care to ensure their personal safety.

Although every care has been taken in compiling this catalogue to ensure accuracy no responsibility is accepted for any errors that may be included therein.
Huge growth rates, two great sires Maximilian and Samurai to breed this stag out of one of our best dams, 350 Red for breeding efficiency. This stag has ranked number one of our progeny that we bred in 2005. Great body conformation and ranked No 1 on our loin and carcass value index for born 2005.

This stag has a current (Oct 2012) 12 mth BV 11.92

The two heaviest antlered deer we have ever bred were Lot 1 and Lot 2 in the 2008 sale both East European with 10.4 and 11.25kg of antler and made $28,000 and $27,000 respectively. Remarkably however Stanfield kept they’re favourite named Vladimir son of Sergei by Maximilian daughter. 253kg liveweight and 7.3kg H/A stripped with a very heavy beam and with top BVs at +17.71. He is incredibly quiet and a wonderful new asset to the herd.

42” long and 32” inside @ 4 yrs. Estimated 7+ kgs velvet@ 4 yrs which also reflects the thickness of beam in this antler.

This stag has a current 12 month (October 2012) BV 11.92